Energy Part 3 Energy Conversion Technologies & System Integration

Osher Lifelong Learning Institute

At Tufts University

Fall 2018

Peter Baldwin

617-306-7419

pete_baldwin@base-e.net

Energy Policy = Choice of Fuel(s)

"Use What You Have!"

Primary Energy Consumption by Fuel - Mtoe

U.S. = 91.86 Quads

Million tonnes oil equivalent	Oil	Natural	Coal	Nuclear	Hydro	Renew -		Oil	Natural	Coal	Nuclear	Hydro	Renew -		Percent
		Gas		energy	electric	ables	Total		Gas		energy	electric	ables	Total	2017 T
US	907.6	645.1	340.6	191.9	59.7	83.1	2228.0	913.3	635.8	332.1	191.7	67.1	94.8	2234.9	16
Canada	107.0	94.1	18.9	21.8	87.6	9.6	339.0	108.6	99.5	18.6	21.9	89.8	10.3	348.7	2
Mexico	90.1	79.0	12.4	2.4	6.9	4.1	194.9	86.8	75.3	13.1	2.5	7.2	4.4	189.3	1.
Total North America	1104.6	818.2	371.9	216.1	154.2	96.8	2761.9	1108.6	810.7	363.8	216.1	164.1	109.5	2772.8	20
Brazil	135.7	32.4	15.9	3.6	86.2	19.1	293.0	135.6	33.0	16.5	3.6	83.6	22.2	294.4	2
Total S. & Cent. America	320.8	150.6	34.9	5.5	156.4	28.6	696.8	318.8	149.1	32.7	5.0	162.3	32.6	700.6	5
France	79.2	38.3	8.2	91.2	13.6	8.4	238.9	79.7	38.5	9.1	90.1	11.1	9.4	237.9	1
Germany	117.3	73.0	75.8	19.2	4.6	38.3	328.2	119.8	77.5	71.3	17.2	4.5	44.8	335.1	2
Italy	59.8	58.5	11.0	-	9.6	14.8	153.8	60.6	62.0	9.8	-	8.2	15.5	156.0	1
Spain	64.2	25.0	10.5	13.3	8.2	15.4	136.7	64.8	27.5	13.4	13.1	4.2	15.7	138.8	1
Turkey	47.1	38.2	38.5	-	15.2	5.4	144.4	48.8	44.4	44.6	-	13.2	6.6	157.7	· 1
United Kingdom	76.3	69.6	11.2	16.2	1.2	17.6	192.2	76.3	67.7	9.0	15.9	1.3	21.0	191.3	1
Total Europe	719.3	434.7	295.1	195.2	146.1	144.2	1934.6	731.2	457.2	296.4	192.5	130.4	161.8	1969.5	14
Russian Federation	152.5	361.3	89.2	44.5	41.8	0.3	689.6	153.0	365.2	92.3	46.0	41.5	0.3	698.3	5
Total CIS	202.8	492.6	156.2	63.3	56.3	0.8	972.0	203.4	494.1	157.0	65.9	56.7	0.9	978.0	
ran	80.7	173.1	0.9	1.5	3.5	0.1	259.8	84.6	184.4	0.9	1.6	3.7	0.1	275.4	
Saudi Arabia	173.8	90.6	0.1	-	-	^	264.5	172.4	95.8	0.1	-	-	^	268.3	
United Arab Emirates	45.7	62.3	1.5	-	-	0.1	109.6	45.0	62.1	1.6	-	-	0.1	108.7	· (
Total Middle East	416.0	437.6	9.1	1.5	4.6	1.0	869.7	420.0	461.3	8.5	1.6	4.5	1.4	897.2	
South Africa	28.7	4.0	84.7	3.6	0.2	1.8	123.0	28.8	3.9	82.2	3.6	0.2	2.0	120.6	
Total Africa	192.6	114.5	94.9	3.6	27.1	5.2	438.0	196.3	121.9	93.1	3.6	29.1	5.5	449.5	3
Australia	50.5	35.9	43.6	-	4.0	5.4	139.5	52.4	36.0	42.3	-	3.1	5.7	139.4	
China	587.2	180.1	1889.1	48.3	261.0	81.7	3047.2	608.4	206.7	1892.6	56.2	261.5	106.7	3132.2	23
ndia	217.1	43.7	405.6	8.6	29.0	18.3	722.3	222.1	46.6	424.0	8.5	30.7	21.8	753.7	
ndonesia	74.2	32.9	53.4	-	4.4	2.6	167.4	77.3	33.7	57.2	-	4.2	2.9	175.2	: ·
Japan	191.4	100.1	118.8	4.0	18.1	18.8	451.2	188.3	100.7	120.5	6.6	17.9	22.4	456.4	:
South Korea	128.9	41.0	81.9	36.7	0.6	3.1	292.2	129.3	42.4	86.3	33.6	0.7	3.6	295.9	
Taiw an	48.6	17.2	38.6	7.2	1.5	1.0	114.0	49.2	19.1	39.4	5.1	1.2	1.2	115.1	0
Thailand	62.1	43.5	17.7	-	0.8	2.8	126.9	63.9	43.1	18.3	-	1.1	3.4	129.7	1
Fotal Asia Pacific	1601.1	625.1	2744.0	106.0	368.5	140.8	5585.5	1643.4	661.8	2780.0	111.7	371.6	175.1	5743.6	4:
Fotal World	4557.3	3073.2	3706.0	591.2	913.3	417.4	13258.5	4621.9	3156.0	3731.5	596.4	918.6	486.8	13511.2	
	04 40/	00.00/	00.00/	4 50/	0.00/	0 404	400.00/	24.00/	00 40/	07 00/	4 40/	0.00/	0.00/	100.00/	1 400

Making Electricity

Making Electricity - The Terminology

- **Prime Movers are Mechanical Devices that** extract power from energy level differentials in their working fluids
 - Sources are the high side
 - Sinks are the low side
- Most Prime Movers are Heat Engines
- Working Fluid is the media used to
 - Extract the heat from the source/high side at a high pressure & temperature
 - Expand thru the Prime Mover, causing equipment rotation
 - Recover remaining heat & pressure on the low side
 - Return Working Fluid to the system a closed cycle
 - Exhaust Working Fluid to the atmosphere in an **open cycle**

- An Electric Generator, or
- Mechanical devices such as compressor and pumps
- The higher the energy differentials , the smaller the equipment
- The smaller the equipment the faster it runs and the lower the cost
- The equipment used in heat cycles are
 - Turbines
 - Reciprocating engines
- **Cycle Efficiency** improves with greater high side pressure and temperature

<u>base</u>

Working Fluids

- Steam

- Supercritical (SCPC)
- Ultra-supercritical Pulverized Coal (USCPC)
- Nuclear
- Geothermal
- Concentrated Solar

- Air/Vitiated Air

- Gas Turbine
- Wind Turbine

- Organic Fluid

- Organic Rankine Cycle (ORC)
- Ocean Thermal-Ammonia
- Geothermal

Water

- Hydroelectric
- Wave
- Tidal

- Helium

- Pebble Bed Modular Reactor (PBMR)
- Molten Salt Reactor (MSR)

- CO₂

- Allam Cycle
- Molten Salt Reactor
- Super-critical CO2

Units of Measure

Units of Mass

- Ton (short) = 2000 lb
- tonne (metric) = 1000 kg = 2205 lb
- Mt = mmt = million metric tonnes
- Gigatonne (Gt) = 1000 Mt

Units of Cost

- Plant Cost (\$/kW)
- LCOE Levelized Cost of Electricity (mils/kWh)

Utilization Rate

- Capacity Factor % = kWh produced/kWh rated
 - 85% Pulverized Coal
 - 75% NGCC
 - 20-30% Wind

Measures of Efficiency

- Power Plant Heat Rate
 Btu/kWh
- Power Plant Efficiency
 - -3412 Btu/kWh/Plant Heat Rate
- LHV & HHV Fuel Heat Content
 - -The gas company sells HHV
 - -Utilities normally use HHV
 - -Gas Turbine Industry advertises/uses LLV

-Natural Gas

- LHV = 23,860 Btu/lb
- HHV = 21,501 Btu/lb
- The effect is a 10% difference in claimed efficiency
- Net Output vs. Gross Output

Each fuel has: – An energy content - Btu/lb – A carbon content – lb-CO₂/mmBtu Each Power Plant (type) has efficiency or "heat rate" – Btu/kWh

Hydrocarbon Fuels Energy Content

Energy Source	Unit	Energy Content	
		(Btu)	Btu/Ib
Electricity	1 Kilowatt-hour	3412	-
Butane	1 Cubic Foot (cu.ft.)	3200	20,185
Coal	1 Ton	2800000	14,000
Crude Oil	1 Barrel - 42 gallons	5800000	19,153
Fuel Oil no.1	1 Gallon	137400	16,756
Fuel Oil no.2	1 Gallon	139600	19,579
Fuel Oil no.4	1 Gallon	145100	18,918
Fuel Oil no.5	1 Gallon	148800	18,859
Fuel Oil no.6	1 Gallon	152400	18,815
Diesel Fuel	1 Gallon	139000	20,020
Gasoline	1 Gallon	124000	20,418
Natural Gas	1 Cubic Foot (cu.ft.)	950 - 1150	23,623
Heating Oil	1 Gallon	139000	16,951
Kerosene	1 Gallon	135000	19,795
Pellets	1 Ton	16500000	8,250
Propane LPG	1 Gallon	91330	21,745
Propane gas 60°F	1 Cubic Foot (cu.ft.)	2550	21,544

Coal: C₁₃₇H₉₇O₉NS Natural Gas: CH₄

"Natural Gas is 1/2 of Coal"

Stationary Combustion Carbon Emission Factors

Fuel Type	Heating Value	CO ₂ Factor	CH₄ Factor	N₂O Factor	CO ₂ Factor	CH₄ Factor	N₂O Factor	Unit
	mmBtu per short	kg CO ₂ per	g CH ₄ per mmBtu	g N ₂ O per mmBtu	kg CO ₂ per short	g CH ₄ per short	g N ₂ O per short	
	ton	mmBtu			ton	ton	ton	
Coal and Coke								
Anthracite Coal	25.09	103.54	11	1.6	2,598	276	40	short tons
Bituminous Coal	24.93	93.40	11	1.6	2,328	274	40	short tons
Sub-bituminous Coal	17.25	97.02	11	1.6	1,674	190	28	short tons
Lignite Coal	14.21	96.36	11	1.6	1,369	156	23	short tons
Mixed (Commercial Sector)	21.39	95.26	11	1.6	2,038	235	34	short tons
Mixed (Electric Power Sector)	19.73	94.38	11	1.6	1,862	217	32	short tons
Mixed (Industrial Coking)	26.28	93.65	11	1.6	2,461	289	42	short tons
Mixed (Industrial Sector)	22.35	93.91	11	1.6	2,099	246	36	short tons
Coke	24.80	102.04	11	1.6	2,531	273	40	short tons
Fossil Fuel-derived Fuels (Solid)								
Municipal Solid Waste	9.95	90.70	32	4.2	902	318	42	short tons
Petroleum Coke (Solid)	30.00	102.41	32	4.2	3,072	960	126	short tons
Plastics	38.00	75.00	32	4.2	2,850	1,216	160	short tons
Tires	26.87	85.97	32	4.2	2,310	860	113	short tons
Biomass Fuels (Solid)								
Agricultural Byproducts	8.25	118.17	32	4.2	975	264	35	short tons
Peat	8.00	111.84	32	4.2	895	256	34	short tons
Solid Byproducts	25.83	105.51	32	4.2	2,725	827	108	short tons
Wood and Wood Residuals	15.38	93.80	32	4.2	1,443	492	65	short tons
	mmBtu per scf	kg CO ₂ per	g CH ₄ per mmBtu	g N ₂ O per mmBtu	kg CO ₂ per sof	g CH₄ per scf	g N ₂ O per scf	
		mmBtu						
Natural Gas								
Natural Gas (per sct)	0.001028	53.02	1.0	0.10	0.05450	0.001028	0.000103	sct
Fossil-derived Fuels (Gaseous)	0.000000	074.00	0.000	0.40	0.00504	0.000000	0.000000	
Blast Furnace Gas	0.000092	2/4.32	0.022	0.10	0.02524	0.000002	0.000009	SCT
Coke Oven Gas	0.000599	46.85	0.480	0.10	0.02806	0.000288	0.000060	SCT
Presson Con	0.001388	59.00	0.022	0.10	0.08189	0.000031	0.000139	SCI
Propane Gas	0.002516	61.46	0.022	0.10	0.15463	0.000055	0.000252	SCT
Biomass Fuels (Gaseous)	0.000044	52.07	2 200	0.620	0.04270	0.000004	0.000530	aaf
biogas (Captured Methane)	0.000841	52.07	3.200	0.630	0.04379	0.002691	0.000530	SCT

Sub-Bituminous Coal = 97.02 kg/mmBtu x 2.20462 lb/kg = 213.9 lb-CO ₂ /mmBtu
β

Lignite = 96.36

= 212.44Bituminous Coal = 93.40= 205.91Natural Gas = 53.02= 116.88

"Practical Strategies for Emerging Energ

EPA Output Ratings 2015 – lb-CO₂/MWh

			Baseline							
			Report							
Fuel	1	Vatural Gas			Bituminous Coal					
Carbon Factor - Ib-CO2/mmBtu	116.4	116.4	116.4		203.3	203.3	203.3	203.3		
Power Plant										
- Туре	SC	NGCC	NGCC		PC	SCPC	USCPC	USCPC		
- Heat Rate (HHV) - Btu/kWh	9885	6602	7162		8795	8268	7975	7187		
- Efficiency - HHV%	34.5%	51.7%	47.6%		38.8%	41.3%	42.8%	47.5%		
- Efficiency - LHV%	38.3%	57.3%	52.9%	_	43.1%	45.8%	47.5%	52.7%		
- Thermal Input - mmBtu	850	850	850		850	850	850	850		
- Rating - MW@850 mmBtu/hr	85.99	128.74	118.68	-	96.65	102.80	106.58	118.28		
Emissions - Ib-CO2/MWh										
- Unabated	1150.4	768.4	833.5] [1788	1681	1622	1461		
Applieghts Threehold										
- Applicable Infeshold	1150	000	000		1504	1504	1504	1504		
- Intenim	1150	83Z	03Z		1034	1534	1034	1005		
- Final	1150	771	771		1305	1305	1305	1305		
CCS % required to meet final threshold	0.04%	0.00%	7.50%		27.02%	22.37%	19.52%	10.69%		

Coal has to employ CCS....Gas does not!

"Practical Strategies for Emerging Energy Technologies"

base

Utility Generation

The Rankine Cycle

- Steam

- Supercritical (SCPC)
- Ultra-supercritical Pulverized Coal (USCPC)
- Nuclear
- Geothermal
- Concentrated Solar

- Organic Fluid

- Organic Rankine Cycle (ORC)
- Ocean Thermal–Ammonia
- Geothermal

Closed Rankine Cycle Steam Power Plant

base.

Power Cycle Energy Flows – 500MW Pulverized Coal

The Brayton Cycle

Simple Cycle Process

base

Siemens Gas Turbine Generator

Gas Turbine Rotor

Impact of Design Conditions on Efficiency

The hotter the better - The higher the pressure the better

Utility Size Pressure/Temperature Ranges

Natural Gas Combined Cycle - NGCC

Natural Gas Combined Cycle - NGCC

Simples Cycle Gas Turbine Section 42-43% LHV Efficiency 1100 lb-CO₂/MWh Combined Cycle "Adder" 63-65% LHV Efficiency 800 lb-CO2/MWh

Heat Recovery Steam Generator (HRSG)

DOE Advanced Coal Power Generation

<u>base</u>

Nuclear Power Plant

A Pressurized Water Reactor (PWR)

<u>base</u>

"Practical Strategies for Emerging Energy Technologies"

Advanced Nuclear

Heat Exchangers are a Challenge

MSR: FROM THORIUM TO ENERGY

This ongoing decay (from Thorium to Uranium) will generate large amounts of energy in the form of heat. This heat can be transported through a gas in a heat exchanger and transferred to a turbine connected to a generator which will produce electricity.

ELYSIUM INDUSTRIES | TECHNICAL DECK

Fission fuel produces fission products and actinides. Fission products only stay toxic for about 200 years while many actinides stay toxic for over 30 000 years. Molten Salt Reactors can fully recycle actinide wastes and only emit fission product wastes. This results in nuclear waste remaining toxic for only about 200 years as opposed to thousands of years for other nuclear reactors.

Concentrating "Big Solar"

Ivanpah Solar Electric Generating System Earns *POWER*'s Highest Honor

- Three self-contained units
- 3500 acres
- 5 miles end-to-end
- 4 types of heliostats depending on distance
- Air-cooled condensers

"Practical Strategies for Emerging Energy Technologies"

Parameter	lvanpah
Output	392 MW (gross), 377 MW (net)
Boiler inlet temp	368F
Steam temp	1,013F
Steam pressure	2,479 psi
Heliostats	173,500 (each holds two mirrors)
Heliostat solar-field aperture area	2,600,000 m ³
Tower height	459 ft
Net generation (first 100 days)	116,000 MWh
Gross efficiency	28.72%

- Project Partners
- Bright Source Energy
- NRG Energy (NRG Renew)
- Google
- Bechtel

Source: Power Magazine August 2104

Ocean Thermal Gradients

Geothermal

<u>base</u>

Organic Rankine Cycle

- Low Grade Heat Recovery
- Matches working fluid to available temperatu •
 - Geothermal 90% Isobutane/10% Isopentane
 - Concentrated Solar Power (CSP)
 - Gas Turbine exhaust

Distributed Generation

Combustion Engine

Combined Heat and Power: Energy savings and efficiency

Source: U.S. Department of Energy Northeast CHP Technical Assistance Partnership

"Practical Strategies for Emerging Energy Technologies"

hase

Engine or Gas Turbine Cogeneration (CHP)

"Practical Strategies for Emerging Energy Technologies"

Recuperated Brayton Cycle

Microturbines

30kW Capstone Microturbine Generator

Table 5-1. Summary of Microturbine Attributes

Electrical Output	Available from 30 to 330 kW with integrated modular packages up to 1,000 kW.
Thermal Output	Exhaust temperatures in the range of 500 to 600 °F, suitable for supplying a variety of site thermal needs, including hot water, steam, and chilled water (using an absorption chiller).
Fuel Flexibility	Can utilize a number of different fuels, including natural gas, sour gas (high sulfur, low Btu content), and liquid fuels (e.g., gasoline, kerosene, diesel fuel, and heating oil).
Reliability and life	Design life is estimated to be 40,000 to 80,000 hours with overhaul.
Emissions	Low NO _x combustion when operating on natural gas; capable of meeting stringent California standards with carbon monoxide/volatile organic compound (CO/VOC) oxidation catalyst.
Modularity	Units may be connected in parallel to serve larger loads and to provide power reliability.
Part-load Operation	Units can be operated to follow load with some efficiency penalties.
Dimensions	Compact and light weight, 2.3-2.7 cubic feet (cf) and 40-50 pounds per kW.

<u>base</u>

DOE Catalogue of Microturbine Technologies March 2015

Figure 5-1. Microturbine-based CHP System Schematic

Source: FlexEnergy

Small Gas Turbine Performance

"Practical Strategies for Emerging Energy Technologies"

Proton Exchange Membrane (PEM)

FC boost converter

Power control unit

Motor

<u>base</u>

PEM Fuel Cell Efficiency

Solid Oxide Fuel Cell - SOFC

- Uses a hard, non-porous ceramic compound as the electrolyte
- Can reach 60% powergenerating efficiency
- Operates at extremely high temperatures 1800 degrees
- Used mainly for large, high powered applications such as industrial generating stations, mainly because it requires such high temperatures

Solid Oxide Fuel Cell-Gas Turbine Hybrid (SOFC-GT)

Siemens Power Corporation developed the very first pressurized SOFC/GT hybrid system using their tubular SOFC stack design. This system, presented in Figure 7, was tested at the NFCRC with support from Southern California Edison, the U.S. Department of Energy and others. The system was designed, constructed and tested to demonstrate and prove the hybrid concept. The system operated for over 2900 hours and produced up to 220 kW at fuel-to-electricity conversion efficiencies of up to 53%. In parallel, NFCRC developed dynamic simulation capabilities for each of the system components together with a simulation framework for modeling and developing control strategies for integrated SOFC/GT systems.

Fig. 7. Pressurized 220 kW SOFC/Gas Turbine Hybrid

base,

Renewables and Their Integration

Renewable Portfolio Standards

Renewable Portfolio Standard Legislation as of May 2015

No RPS has ever been repealed. West Virginia repealed a standard that could have been met without any renewable energy, not an RPS. "Ohio froze its RPS in 2014. In 2017, these standards should oick back up

- Seven states—Hawaii, California, Nevada, Colorado, Minnesota, Connecticut, and Oregon—have effective RPS requirements of 25 percent or greater.
- Six states CA, MI, NY, MN, IL and VT are seriously debating an increase in their RPS this year.
- Ohio: With the signing of Senate Bill 310 in 2014, Ohio became the only state to "freeze" its RPS, effectively halting the state's mandates for efficiency and renewables until 2017. In 2017, these standards should pick up where they left off when the freeze occurred, however an Energy Mandates Study Committee is reviewing wholesale changes to the standard. In this context of policy uncertainty, renewable energy employment and investment is moving away, to more welcoming states.
- Legislators in four states (CO, MT, CT, and NH) have voted down proposals to diminish or repeal RPS policies this year.

AEO 2015 Total U.S. renewable generation by fuel in 2013 & six 2040 cases (billion kWh)

Net total available to the grid 2013 = 3,888 billion kWh (~14%) 2040 Ref = 4,672 billion kWh (~19%)

- Renewables get to dispatch first
- If they can make power, the grid has to take it
- Imposing their inherent variability on the entire grid

Source: American Wind Energy Association (AWEA)

Renewables Levelized Cost 2010 & 2014

Note: Size of the diameter of the circle represents the size of the project. The centre of each circle is the value for the cost of each project

on the Y axis. Real weighted average cost of capital is 7.5% in OECD countries and China; 10% in the rest of the world.

Demand Response

Demand Response

- DR as changes (usually reductions) in electricity usage by end-use customers from their normal consumption patterns.
- In response to changes in the price of electricity or to direct incentives, typically at times of high wholesale market prices or when system reliability is jeopardized.
- An important distinction for DR is that it must be dispatchable
 by a utility or system operator or be initiated by a customer in response to a non-fixed price signal.

Time of Day Rates Encourage Customer DR

	Summer			
	On-Peak	Mid-Peak	Off-Peak	Total
Annual Operating Hours	650	975	2015	3640
Electric Demand Charge - \$/kW/month	16.50	2.45	3.30	5.43
Electric Rate - \$/kWh	0.1445	0.0680	0.0430	0.0678
Demand Charge - \$/kWh	0.1269	0.0126	0.0082	0.0306
Average Electric Rate - \$/kWh	0.2714	0.0806	0.0512	0.0984
Months of Operation-Summer 5			1	
	Winter			
	On-Peak	Mid-Peak	Off-Peak	Total
Annual Operating Hours	0	1972	3124	5096
Electric Demand Charge - \$/kW/month	0.00	0.00	3.30	2.02
Electric Rate - \$/kWh	0.0000	0.0800	0.0460	0.0592
Demand Charge - \$/kWh	0.0000	0.0000	0.0074	0.0045
Average Electric Rate - \$/kWh	0.0000	0.0800	0.0534	0.0637
Months of Operation-Winter 7				
	On-Peak	Mid-Peak	Off-Peak	Total
Annual Operating Hours	650	2947	5139	8736
Electric Demand Charge - \$/kW/month	16.50	0.81	3.30	3.44
Electric Rate - \$/kWh	0.1445	0.0760	0.0448	0.0628
Demand Charge - \$/kWh	0.1269	0.0042	0.0077	0.0154
Average Electric Rate - \$/kWh	0.2714	0.0802	0.0525	0.0781
Months of Operation-Total 12				

"Practical Strategies for Emerging Energy Technologies"

Resource Dispatch Under User Control

Wind Integration Costs

- -Integration includes:
 - Fluctuating output profile costs
 - Output uncertainties balancing costs
 - Grid costs

At higher penetration, integration costs for wind exceed generation costs.

Source: System LCOE: What are the costs of variable renewables? Falko Ueckerdt, Lion Hirth, Gunnar Luderer, Ottmar Edenhofer Paris, June 20, 2013 32th International Energy Workshop

As presented by John Thompson Clean Air Task Force CCS – Pittsburgh 2104

Dealing with an even "Bigger" Duck

The California Duck is a graphic published by the California Independent System Operator that projects the expected need for non-renewable generation over a 24-hour day. Each line in the duck is a different year from 2013 to 2020. As time marches on and more solar generation is placed on line, the non-renewable demand drops during midday. The change in hourly demand drives the 2013 line, the duck's back. The solar generation that will be online by 2020 results in a dip in non-renewable demand during midday – the duck's belly.

Source: Bonnie Marini – Siemens Energy Through Power Engineering

Integrating Renewables "Dealing with The Duck"

Economic Merit Order Dispatch

Impact of Intermittent Renewables on Merit Order

"Practical Strategies for Emerging Energy Technologies"

Shift in Supply Cost Curve with Renewables

La Paloma Plant Going Bankrupt

A natural gas-fired power plant in California that earlier this year warned it might need to shut down filed for bankruptcy protection on Tuesday, blaming "inhospitable" regulations and a shift toward renewable energy for power generation.

La Paloma Generating Co LLC [CMENGL.UL], a 1,200 megawatt combined cycle plant about 110 miles northwest of Los Angeles, filed for U.S. Chapter 11 bankruptcy in Delaware on Tuesday, citing \$524 million of debt.

In its filing, La Paloma said market factors including slower-than-expected growth in electricity demand and a rise in renewable generation resources in California were "exacerbated by an inhospitable regulatory environment."

La Paloma is owned by Rockland Capital LLC, one of several California plant owners that has asked the state for help in offsetting losses, arguing that it is in the state's interest to support the natural gas plants because they provide stability and reliability to the power grid.

An unexpected combination of oversupply of natural gas and a boom in solar and other renewable energy has depressed power prices and threatened the viability of natural gas plants that sell power into California's electricity market.

In its court filing, La Paloma said it had decided that Chapter 11 was in the best interests of the company and its creditors and stakeholders, following consultation with financial and legal advisers.

The company listed Bank of America Corp (BAC.N) and SunTrust Bank [STIHCB.UL] as its lenders. It has trade debt with a number of organizations including Alstom Power Inc, the West Kern Water District and Pacific Gas & Electric Co (PCG_pa.A).

(Reporting by Tracy Rucinski; Eiting by Steve Orlofsky)

http://www.reuters.com/article/us-la-palomabankruptcy-idUSKBN13V2PY

Exelon's Texas merchant subsidiary files bankruptcy

- ExGen Texas Power owned five generating facilities in the Lone Star state, but the bankruptcy agreement will change that.
- Exelon blamed the financial woes on "historically low power prices within Texas" that created "challenging market conditions for all power generators, including the five natural gas-fired EGTP plants."
- The Exelon development comes as Vistra Energy announced plans to close three coalfired power plants in Texas — part of the 5,625 MW of fossil fuel capacity that is slated to be retired or mothballed in the state in the coming year.
- EGTP owns two combined-cycle gas plants, two gas-fired steam boilers and a small simple-cycle plant.
- Cheap gas has been pushing coal off the grid in some markets, and Texas' wind power is now having some of the same effect on gas. The Handley plant is a 3-unit, 1,265 MW facility located in Fort Worth, providing electricity to customers in the Electric Reliability Council of Texas.

Storage

Energy Storage Technologies

"Practical Strategies for Emerging Energy Technologies"

Pumped Hydro Storage

Compressed Air Energy Storage (CAES)

Gas-Battery Spinning Reserve

For deploying a novel, groundbreaking gas-battery hybrid technology along with environmentally significant upgrades within a tight installment window, and despite logistical hurdles, Southern California Edison's Center Peaker and Grapeland Peaker plants are especially deserving of *POWER*'s Top Plant recognition.

Sonal Patel

Appendix

AEO2017 Cost & Performance New Generating Tech

Technology	First available year ¹	Size (MW)	Lead time (years)	Base overnight cost in 2016 (2016 \$/kW)	Project Contin- gency Factor ²	Techno- logical Optimism Factor ³	Total overnight cost in 2016 ^{4,10} (2016 \$/kW)	Variable O&M ⁵ (2016 \$/MWh)	Fixed 0&М (2016\$/ kW/ут)	Heat rate ⁶ in 2016 (Btu/kWh)	nth-of-a- kind heat rate (Btu/kWh)	
Coal with 30%												
carbon sequestration	2020	650	4	4,586	1.07	1.03	5,030	7.06	69.56	9,750	9,221	37.0%
Coal with 90% carbon sequestration	2020	650	4	5,072	1.07	1.03	5,562	9.54	80.78	11,650	9,257	36.8 %
Conv Gas/Oil Comb Cycle	2019	702	3	923	1.05	1.00	969	3.48	10.93	6,600	6,350	53.7%
Adv Gas/Oil Comb Cycle (CC)	2019	429	3	1,013	1.08	1.00	1,094	1.99	9.94	6,300	6,200	55.0%
Adv CC with carbon sequestration	2019	340	3	1,917	1.08	1.04	2,153	7.08	33.21	7,525	7,493	45.5%
Conv Comb Turbine ⁷	2018	100	2	1,040	1.05	1.00	1,092	3.48	17.39	9,920	9,600	35.5%
Adv Comb Turbine	2018	237	2	640	1.05	1.00	672	10.63	6.76	9,800	8,550	39.9%
Fuel Cells	2019	10	3	6,252	1.05	1.10	7,221	44.91	0.00	9,500	6,960	49.0%
Adv Nuclear	2022	2,234	6	5,091	1.10	1.05	5,880	2.29	99.65	10,459	10,459	32.6%
Distributed Generation - Base	2019	2	3	1,463	1.05	1.00	1,536	8.10	18.23	8,981	8,900	38.3%
Distributed Generation - Peak	2018	1	2	1,757	1.05	1.00	1,845	8.10	18.23	9,975	9,880	34.5%
Biomass	2020	50	4	3,540	1.07	1.00	3,790	5.49	110.34	13,500	13,500	25.2%
Geothermal ^{8,9}	2020	50	4	2,586	1.05	1.00	2,715	0.00	117.95	9,510	9,510	35.8%
MSW - Landfill Gas	2019	50	3	8,059	1.07	1.00	8,623	9.14	410.32	18,000	18,000	19.0%
Conventional Hydropower [®]	2020	500	4	2,220	1.10	1.00	2,442	2.66	14.93	9,510	9,510	35.8%
Wind ¹⁰	2019	100	3	1,576	1.07	1.00	1,686	0.00	46.71	9,510	9,510	
Wind Offshore	2020	400	4	4,648	1.10	1.25	6,391	0.00	77.30	9,510	9,510	
Solar Thermal ⁸	2019	100	3	3,908	1.07	1.00	4,182	0.00	70.26	9,510	9,510	
Photovoltaic ^{8,10,11}	2018	150	2	2,169	1.05	1.00	2,277	0.00	21.66	9,510	9,510	

Power Plant Conversion Efficiency (and Cost)

BP Conversion Factors

Approximate conversion factors

Crude oil*

From	То									
	tonnes (metric)	kilolitres	barrels	US gallons	tonnes per year					
	1		marapiy by —							
Tonnes (metric)	1	1.165	7.33	307.96	-					
Kilolitres	0.8581	1	6.2898	264.17	-					
Barrels	0.1364	0.159	1	42	-					
US gallons	0.00325	0.0038	0.0238	1	-					
Barrels per day			-	-	49.8					

*Based on worldwide average gravity.

Products

		To conv	vert	
	barrels to tonnes	tonnes to barrels Multiply	kilolitres to tonnes	tonnes to kilolitres
	1			
Liquefied petroleum gas (LPG)	0.086	11.60	0.542	1.844
Gasoline	0.120	8.35	0.753	1.328
Kerosene	0.127	7.88	0.798	1.253
Gas oll/diesel	0.134	7.46	0.843	1.186
Residual fuel oll	0.157	6.35	0.991	1.010
Product basket	0.125	7.98	0.788	1.269

Natural gas (NG) and liquefied natural gas (LNG)

From	То								
	billion cubic metres NG	billion cubic feet NG	million tonnes oil equivalent Multi	million tonnes LNG	trillion British thermal units	million barrels oil equivalent			
			muru	piy by					
1 billion cubic metres NG	1	35.3	0.90	0.74	35.7	6.60			
1 billion cubic feet NG	0.028	1	0.025	0.021	1.01	0.19			
1 million tonnes oil equivalent	1.11	39.2	1	0.82	39.7	7.33			
1 million tonnes LNG	1.36	48.0	1.22	1	48.6	8.97			
1 trillion British thermal units	0.028	0.99	0.025	0.021	1	0.18			
1 million barrels oil equivalent	0.15	5.35	0.14	0.11	5.41	1			

"Practical Strategies for Emerging Energy Technologies"

Units

1 metric tonne	= 2204.62lb
	 = 1.1023 short tons
1 kilolitre	 6.2898 barrels
	 1 cubic metre
1 kilocalorie (kcal)	= 4.187kJ
	= 3.968Btu
1 kilojoule (kJ)	 = 0.239kcal
	= 0.948Btu
1 British thermal	= 0.252kcal
unit (Btu)	= 1.055kJ
1 kilowatt-hour (kWh)	= 960kcal
	= 3600kJ
	= 3412Btu

Calorific equivalents

One tonne of oil equivalent equals approximately:

Heat units	10 million kilocalories
	42 gigajoules
	40 million British
	thermal units
Solid fuels	1.5 tonnes of hard coal
	3 tonnes of lignite
Gaseous fuels	See Natural gas and
	liquefied natural gas table
Electricity	12 megawatt-hours

One million tonnes of oil or oil equivalent produces about 4400 gigawatt-hours (= 4.4 terawatt-hours) of electricity in a modern power station.

1 barrel of ethanol = 0.57 barrel of oll 1 barrel of biodlesel = 0.88 barrel of oll

Competitive Positioning Based on EPA NSPS-2014

		NG	000				
Case 12 vs. Case 13	ase (11	12	13	14		
EV Cust a set	CO2 Capture	No	Yes	No	Yes		
= 5X first cost	Gross Power Output - kWe	580,400	662,800	564,700	511,000		
$-\frac{1}{2}$ the efficiency	Auxilliary Power Requirements - kWe	30,410	112,830	9,620	37,430		
72 the efficiency	Report Net Power Output - KWe	549,990	549,970	555,080	4/3,5/0		
– Coal cost up	Net Plant HHV Efficiency - %	39.30%	28.40%	50.20%	42.80%		
44% since 2010	Net Plant HHV Heat Rate - Btu/kWh	8,687	12,002	6,798	7,968		
	Total Plant Cost - \$/kW	1995	3583	725	1509		
- Coal cost up	Total Overnight Cost - \$/kW	2452	4391	891	1842		
80% since	Total as Spent Cost - \$/kW	2782	5006	957	1986		
8070 Shice	LCOE - mils/kWh	80.95	137.28 🗲 🗕 🗕	59.59	86.58		
original 2007	CO2 Emissions - Ib/MWb	1769	244	804	94		
hagalina		1700	244	004	34		
Dasenne	\$/MMBtu	2.94	2.94	6.13	6.13		
	Lood Foster	050/	050/	050/	050/		
		00%	00%	00%	00%		
	kW Nominal Gross	580,411	662,836	559,532	593,471		
	550,000 kW Nominal Net	550,000	550,000	550,000	550,000		
	Total on Sport Capital	¢1 520 924 792	¢0 750 000 007	¢526 222 607	¢1 002 280 160		
Source data:	Cost Premium vs. NGCC Case 13	1.003 611 175	2,227,068,690	-	566,056,553		
DOE/NETL- Baseline		.,,	_,,,		,,		
341/082312	kWh/year	4,095,300,000	4,095,300,000	4,095,300,000	4,095,300,000		
August 2012	MMBtu/year	35,575,871	49,151,791	27,839,849	32,631,350		
6	Annual Fuel	\$104.593.061	\$144.506.264	\$170.658.277	\$200.030.178		
DOE/NETL- Baseline	Fuel Cost vs. NGCC Case 13	(\$66,065,216)	(\$26,152,012)	_	\$29,371,901		
2010/1397							
November 2010	LCOE	\$331,514,535	\$562,202,784	\$244,038,927	\$354,571,074		
November 2010	Fuel%	31.6%	25.7%	69.9%	56.4%		
	\$60.00 per tonne	\$197,051	\$27,194	\$90,438	\$9,021		
	CO2 Cost vs. NGCC Case 13	\$106,612	(\$63,244)	_	(\$81,417)		
haso		0.004	450	4 507	450		
JUSE	tonnes-CO2/year	3,284	453	3 1,507 150			
C				$\Delta t \$ 1 00/mmE$	Rtu gog		

"Practical Strategies for Emerging Energy Technologies"

At \$4.00/mmBtu gas LCOE for NGCC is 1/3 of Coal w/CCS

The War on Coal Begins in 2014

8740 w/o CCS 12000 w/CCS AEO 2014 Cost & Performance New Generating Technologies **CCS Required** Total Overnight Carbon Thermal nth of a Kind Cost in 2013 Input Heat Rate **Fuel Heating** Factor lb-**NSPS 2014** Value Btu/lb CO2/mmBtu lb-CO2/MWh Size (MW) mmBtu \$/kW Btu/kWh Threshold 1796 Scrubbed Coal New 1300 11362 2925 8740 8940 205.44 Advanced Combustion Turbine 210 1796 673 8550 21501 116.38 995 Advanced NGCC w/CCS 2084 116.38 CCS Not Required 340 2548 7493 21501 872 Conventional NGCC 620 4216 915 6800 21501 116.38 791 Advanced NGCC 2533 6333 400 1021 21501 116.38 737 **Conventional Combustion Turbine** 85 888 971 10450 21501 116.38 1216

- Coal with CCS
 - First Cost \$/kW is ~5x
 - Levelized Cost of Electricity is 2.3x
 - Efficiency is $\sim 1/2$
 - w/Natural Gas at \$6.13

Plant Type	Plant Cost (2012\$)/kW				
	Without CCS	With CCS			
Single Advanced Pulverized Coal	\$3,246	\$5,227			
Dual Advanced Pulverized Coal	\$2,934	\$4,724			
Single IGCC	\$4,400	\$6,599			
Advanced Combined Cycle	\$1,023	\$2,095			

EIA Analysis of the Clean Power Plan – 5/22/2015

	2005	2013			2020				2030				2040	
			AEO HOGR	CPP HOGR	AEO HEG	CPP HEG	AEO HOGR	CPP HOGR	AEO HEG	CPP HEG	AEO HOGR	CPP HOGR	AEO HEG	CPP HEG
ELECTRIC GENERATION (billion kWh)														
Coal	2,013	1,586	1,443	1,212	1,733	1,415	1,441	898	1,733	1,293	1,440	910	1,744	1,421
Natural Gas	761	1,118	1,450	1,610	1,204	1,377	1,832	2,092	1,573	1,422	2,200	2,439	1,705	1,475
Nuclear	782	789	804	804	804	804	808	808	818	808	808	808	911	863
Hydro	270	267	289	294	294	305	290	295	297	305	290	295	298	308
Wind	18	168	229	263	243	315	232	407	301	634	234	412	489	725
Solar	1	19	51	59	52	70	65	85	80	247	85	106	160	420
Other renewables	69	76	107	110	106	117	146	128	158	161	175	145	222	207
Oil/other	142	47	44	41	43	42	42	39	43	41	42	40	43	42
Total	4,055	4,070	4,417	4,392	4,480	4,445	4,854	4,753	5,003	4,912	5,274	5,154	5,574	5,461
ELECTRIC GENERATIO	N CAPACI	IY (GW)												
Coal	313	304	245	201	265	230	242	173	263	223	242	173	264	223
Natural gas / Oil	442	470	497	516	490	497	573	607	564	540	674	704	657	629
Nuclear	100	99	101	101	101	101	101	101	103	102	101	101	115	109
Hydro	78	79	79	80	80	82	79	80	80	82	79	80	81	83
Wind	9	61	82	97	87	115	83	142	105	216	84	144	165	245
Solar	0	13	27	32	28	38	36	45	44	121	48	58	82	200
Other renewables	12	15	17	18	18	19	20	21	23	26	22	23	32	31
Other	24	25	26	26	26	26	26	26	26	26	26	26	26	26
Total	978	1,065	1,075	1,070	1,094	1,108	1,159	1,196	1,207	1,335	1,275	1,309	1,422	1,546
ELECTRICITY-RELATED	CARBON	DIOXIDE E	MISSIONS	(million m	netric ton	s)								
Powersector	2,416	2,053	1,973	1,789	2,165	1,886	2,089	1,605	2,262	1,727	2,179	1,701	2,266	1,827
Reference (AEO) Base Policy (CPP) Policy with High Oil & Gas Resource (CPPHOGR)			There is no mention of Climate Change in the report and											

- Policy with High Oil & Gas Resource (CPPHOGR)

Let alone a target of 2C/450 ppm!

Page 18; Para (4) "....and static CPP targets in the post-2030 period in the CPP case allow existing coal-fired plants to operate at a higher utilization rate which rises from a low of 60% in 2024 to 71% in 2040."

	China	USA	India	Japan	Germany	Russia
Population - July 2014 est	1,379,302,771	326,525,791	1,281,935,911	126,451,398	80,594,017	142,257,519
Population Growth Rate	0.41%	0.81%	1.17%	-0.21%	-0.16%	-0.08%
Area - km ²	9,596,960	9,826,675	3,287,263	377,915	357,022	17,098,242
GDP - Purchasing Power Parity (\$trillion)	23.1	19.4	9.4	5.4	4.2	4.0
Installed Constating Constitution	1.040	1.074	200	222	204	204
Installed Generating Capacity Gw	1,646	1,074	309	322	204	264
% of World at 6301GW	26%	1/%	5%	5%	3%	4%
Electric Production TWh	6,142	4,088	1,289	976	559	1,008
Electric Consumption TWh	5,920	3,911	1,048	934	515	890
Aggregate Load Factor	42.6%	43.5%	47.6%	34.6%	31.3%	43.6%
Natural Gas Production - BCM	138.4	766.2	31.2	4.5	8.7	598.6
Natural Gas Consumption - BCM	210.3	773.2	102.3	123.6	79.2	418.9
Refined Petroleum Products Production - mmbbl/d	10.9	20.1	4.8	3.5	2.2	6.2
Refined Petroleum Products Consumption - mmbbl/d	11.8	19.7	4.1	4.0	2.4	3.6
Coal Production - Million Tonnes Oil Equivalent	1827.0	455.2	283.9	0.7	42.9	184.5
Coal Consumption - Million Tonnes Oil Equivalent	1920.4	396.3	407.2	119.4	78.3	88.7
Source: CIA World Factbook	192014	0,0,0		11917	,0.0	00.7

World Total Installed Electrical Generating Capacity 6301GW

CIA World Factbook

PS... .Total Value of Outstanding Student Loans - \$1.2 trillion U.S. health care cost 2014 - \$3.3 trillion

U.S. Household Debt 2017 - \$13.2 trillion